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The Cotton—Mouton effect in gases: experiment and theory
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ANTONIO RIZZO
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delle Ricerche, via Risorgimento 35, [-56126 Pisa, Italy

and DAVID M. BISHOP
Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5

When polarized light passes through a material in the presence of a strong
magnetic field, birefringence is observed. This is known as the Cotton—-Mouton
effect. Owing to the increasing sophistication of both experimental and computa-
tional techniques, this particular aspect of magneto-optics has been investigated
increasingly in the last few years. In this review the basic facts concerning both
experiment and theory are discussed and tables summarizing all currently known
gas-phase data are presented.

1. Introduction

At the turn of the century it was experimentally shown that gases have a weak
birefringence when polarized light passes through them in the presence of a strong
magnetic field normal to the direction of the light. This magnetic-field-induced
birefringence is called the Cotton—-Mouton effect (CME), since it was first investigated
in detail by A. Cotton and H. Mouton [1] in 1905. In fact, Kerr [2] had observed the
weak birefringence of a suspension of Fe O in water in a magnetic field in 1901 and
Majorana [3] a year later had witnessed the same behaviour in colloidal solutions of
iron. Nonetheless, the work of Cotton and Mouton was the first complete study of the
phenomenon and it is known by their names. They recognized the analogy with the
Kerr [4] effect, electric-field-induced birefringence, and were able to separate the
magnetic birefringence signal from the stronger Faraday effect signal, which is the
rotation of the polarization vector by a magnetic field applied in the direction of the
light [5]. The new effect was extremely small and measurements in gases before the first
systematic work of Buckingham ez al.[6]in 1967 were very few and far between [7-10].
Investigations concerned benzene vapour [7], hydrogen, nitrogen, nitrogen monoxide
and oxygen [8, 9] at high pressures, and ethane [10]. Since 1967, many more papers
concerning the effect in gases have been published [11-33] and CME experiments have
been employed as sensitive probes of the electromagnetic properties of molecules. For
example, the magnetizability and electric polarizability anisotropies may be obtained
from CME experiments [12, 17]. CME is a particularly valuable source of information
for the magnetizability anisotropies of non-polar molecules, as these species do not
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show a microwave spectroscopic rotational Zeeman effect [12, 15]. Interest in the
CME has grown with the increase in the technical possibilities in optics. It is to be
noted that the same effect should also occur, at an extremely low level, when polarized
light propagates in vacuum in the presence of a strong transverse magnetic field
because of vacuum fluctuations [34]. This provides a further justification for efforts to
study the phenomenon in gases, since in recent years there has been a growing interest
in developing very sensitive equipment to measure vacuum magnetic birefringence
[35-38]. For this type of experiment, CME measurements are a good test of the overall
sensitivity of the apparatus. Moreover the CME of the residual gas in a vacuum tube
can give rise to unwanted systematic effects, whose amplitude should be known prior
to setting the vacuum requirements of the experiment.

The first theoretical treatment of the CME dates from 1910 [39] but the decisive
contribution to the understanding of the topic was given by Buckingham and Pople
[40] in 1956. Since then, different aspects of the theory have been studied in detail
[41-44]and research has been undertaken in quantum-chemical laboratories in several
countries to produce reliable estimates of the effect. The list of references is increasing
[45-65], with a formidable number of theoretical papers in the last decade. The field is
expanding, in parallel, with the advances which have been made in calculations of
other nonlinear optical properties in recent years [66].

Some aspects of the CME have already been treated elsewhere. Very often the Kerr
effect and the CME are treated together. A chapter entitled ‘The Kerr effect and
related phenomena’ in the book by Béttcher and Bordewijk [67] includes optical
magnetically induced birefringence. A review by Williams [68] deals with both the
optical Kerr and the Cotton—M outon effects in solutions. It complements this work by
giving complete references and a detailed account of the state of the art for CME in
solutions and discusses the problems arising when one considers dense fluids. A
section of a review on the aspects of nonlinear optical calculations in atoms and
molecules written by one of us [66] also discusses the CME.

In this article we review the literature concerning the CME in gases. Tables are
given of both experimental and theoretical results and a critical assessment of both
experiment and computational results is attempted. CME is in some respects quite a
unique field, since the theoretical models, the computational techniques and the
experiments are put to a severe test. The intention of this work is to provide
experimentalists and theoretical chemists alike with a collection of data, as complete
as possible, in the hope of furthering a better exchange of information between them.

2. Experiment

The first comprehensive measurements of the CME in gases were reported in [6].
The presence of a strong magnetic field Bt changes the index of refraction with respect
to the zero-field case for light propagating in a medium. The change depends on the
direction of the polarization of the light. If | is the index of refraction for light linearly
polarized parallel to the magnetic field and », the index for the polarization normal to
the magnetic field, the birefringence § shown by the medium after the light has
propagated an optical path L is

L L
o= 2“1(’1\\_’&) sin (260) = 2nIAn sin (20), ()

1 Strictly speaking B indicates the magnetic induction or magnetic flux density.
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Figure 1. A scheme for an experimental set-up: P, polarizer prism ; MF, magnetic field region;
EM, ellipticity modulator; A, analyser prism; D, photodiode.

where 6 1is the angle between the light polarization and the direction of the transverse
magnetic field and Ais the wavelength of the light. An is therefore the physical quantity
to which the CME is related.

Up to now, all researchers have obtained An by the measurement of the ellipticity
¥ acquired by a polarized light beam going through the birefringent medium. In the
case of a very small birefringence the ellipticity ¥ is related to the birefringence by the
formula [69]

‘f’Né— £A in (20 2
~2—nl nsin (26). (2)

Since the pioneering work of Buckingham et al. [6] the CME of almost 40 different
gas species has been measured. The homodyne detection technique, on which the
original apparatus in [6] was based, has been used by several workers [11-13, 15-17,
19-22, 25-28, 31-33]. The ellipticity to be measured is static and to increase the
sensitivity of the apparatus an ellipticity modulator is introduced in the optical path.
The experimental technique has been described in detail in [68] and has been very
successful. For example, Huttner ez a/. [25] measured, in 1987, the CME of hydrogen
corresponding to a An of about 9 X 10™% at standard temperature and pressure (STP)
with a magnetic field B = 1 T. The experimental error in An was about 25X 1076, Up
to now, this is the lowest value of An that has been published using this type of
apparatus. Its main limitation comes from the total static birefringence present in the
optical system. This static birefringence is typically between 10"+ and 107> rad [68].

A different apparatus, based essentially on the experimental method proposed in
1979 by lacopini and Zavattini [70] to measure the vacuum magnetic birefringence
[34], has been used by several groups [14, 18, 23, 29, 30]. Quantum electrodynamics
predicts that a vacuum should show magnetic birefringence. The effect is so small that
a direct measurement has not yet been possible. In the case of this very elementary
‘gas’, in the optical region and for a magnetic field B< 4 X 10° T, the field strength at
which real electron—positron pairs start to form, An is independent of A and
temperature. The predicted value for B = 1T is An = 4.0 X 10”2, that is about eight
orders of magnitude smaller than the smallest anisotropies observed in gases.

The CME of helium, the smallest CME so far found [30], has been measured using
this technique. At STP and with B = 1 T it corresponds to a An of about 2X 10" .
Noise levels corresponding to An of about 2X 10”7 were also observed [29, 30]. This
sensitivity was obtained by modulating the applied magnetic field and using the
heterodyne signal detection technique. In [29] a sensitivity V., of 1078 rad s is



17: 05 21 January 2011

Downl oaded At:

84 C. Rizzo et al.

Table 1. Relevant spectral components of the signal as given in equation (3).

Frequency Fourier component Amplitude Phase
0 Dc o2+ q)ﬁ/Z
1, ZFgoU 0,
0o+ Q I, ¥ o, 0, = 0+06,
20 1 ; 26,

quotedt. This means that after a data integration time ¢ = (Wi..s / ¥)? the effect can be
measured with a signal-to-noise ratio equal to one. With W, =~ 1078 rad ss,B=1T,
L=1m, A= 5145 A and 0 = 45°, for the helium gas at STP, ¢ is about 100 s.

In figure 1 a scheme for an experimental set-up designed to use the heterodyne
technique is shown. A laser beam is linearly polarized by a polarizer prism P. The angle
between the field B and the radiation field £ is 6. Passing through the magnetic field
region the light acquires an ellipticity ¥(z). Let us assume that ¥(¢) can be written as
¥(t) = ¥, cos(2rnQi+ 0,). The radiation then goes through the ellipticity modulator,
an optical device that gives to the beam an ellipticity ¢ (> ¥), so that we can assume
that ¢ = ¢ cos 2rwi+0,). The polarization of the beam is finally analysed by a
polarizer prism A crossed at the maximum extinction o2 with the polarizer prism P.

Any optical element also acts as a birefringence medium. To take this effect into
account we introduce the static ellipticity I' (<« o). The light intensity / seen by the
photodiode D can be written as

1=1[c*+(¥+ o+ 1), (3)

where / is the light intensity before the radiation hits the analyser A. The photodiode
converts the intensity / into a current signal, whose power spectrum is studied via
Fourier transform techniques. In table 1 we list the amplitudes and the phases of the
relevant spectral components of the signal as indicated by equation (3). The ellipticity
¥ can be extracted from the formula

b I I
ol Lt )
?, 2[2w 2[2w

Since one measures directly only the ratio of 7, (1.) to 1., P, isnot known absolutely,
but only relative to ¢, the ellipticity modulation amplitude. Therefore ¢ needs to
be known to a precision higher than that to which ¥ is measured; otherwise the error
in ¥, will be dominated by that in ¢ . The phase of the CME, that is the sign of the
effect, is given by
0y = (9+279‘). (5)
The main advantage of this method is to shift the frequency of the Fourier
component linear in ¥ away from the /, components, owing to the modulation of the
effect at the frequency Q. When no modulation is present, the measurement is limited
by the value of the static ellipticity I', since the value of the /, component is a sum of
I and ¥, This is the typical case for the homodyne technique used in [6]. However,

1 In this review we adhere to the IJTUPAC recommendations on the use of units. The
. . . . . . -+ -+
experimentalist will notice that we employ, in general, s in place of the usual Hz 2, and s™= for
Hz/Hz.
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Figure 2. A typical frequency spectrum around .

note that, although the field B was not modulated in [6], it could be reversed so that
the CME was separated from genuinely static birefringences (from windows etc.),
providing valuable discrimination.

When ¥ is modulated, the limiting noise level comes mainly from the inverse
frequency noise around the /, component and from the quantum noise due to the
corpuscular nature of light (shot noise) [71]. Figure 2 shows a typical frequency
spectrum around the frequency w. When all the other experimental parameters are
fixed, the frequency Q should be chosen so that the components 7, and /. at @+ Q and
o — Q respectively are in a frequency region where the shot noise is predominant. In
practice, 2 should be as large as possible.

The shot noise due to the Poisson distribution of the photon counting is
proportional to the square root of the number of photons seen by the photodiode D
per second, that is

, (2e21 (o2+ goz/z)q)f ©

Ishot nojse OC
' hv

Where vis the frequency of the light, ¢ is the quantum efficiency of the photodiode, e
is the electron charge and 4 is the Planck constant. The rate of photons corresponding
to the signal seen by the photodiode D is proportional to 7, :

el,g el ¥ ¢4

isi na e 8 7
el hv hv ™
The signal-to-noise ratio is therefore
is'gna — I lflz @2 q 2' (8)
ishot noise (2O_z+ qof))hv

Optimal working conditions thus imply that o2 < @3/2, that is the extinction should be
as low as possible (o2 of the order of 1077 has been obtained [29]) while ?, should be
kept larger than 1073 rad.

A Faraday cell and a quarter-wave plate have been successfully used to give a
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modulated, stable and sufficiently high value of ?, [29]. A Faraday cell can be made of
standard glass (e.g. BK7) and put in a modulated magnetic field, whose direction is
parallel to that of propagation of the light beam. The resulting Faraday effect [S]in the
glass rotates the light polarization vector at the same frequency at which the applied
magnetic field is modulated. The magnetic field is usually provided by a solenoid and
modulation is obtained by varying the am plitude of the current in the electrical circuit.
The quarter-wave plate, when properly aligned, transforms the rotation of the
polarization vector for the required gellipticity. By imposing the condition of a signal-
to-noise ratio equal to one, the expression for the sensitivity W, is

hv s
Vo = [ )
qu

With IO =10mW = 1X10%ergs !, g = 0s5and v= 58X 104 571 (A = 5140 1&), Wiens
can be as low as 9 X 1079 rad s-.

Different techniques have been proposed and tested to increase the optical path in
the magnetic field region. In [29, 30] a multipass optical cavity [72] was employed. This
consists of two curved dielectric multilayer interferometric mirrors. The light passes
through a hole in the centre of one of the mirrors and after multiple reflections it exits
the cavity through the same hole. For the CME measurement on neon [29] the light
beam made 36 passes in the cavity but, for the attempt to measure the CME of
vacuum, more than 500 transversals were made by slightly deforming one of the
mirrors [36]. The main problem with this kind of optical cavity is that a large
magnetic volume is necessary in order to have a high number of passes, since the beam
never goes along the same path twice inside the cavity. This is one of the reasons for
suggesting the use of resonant Fabry—Pérot optical cavities [69] for ellipsometric
measurements [37]. Fabry—Pérot cavities, as multipass optical cavities, consist of two
dielectric multilayer interferometric mirrors. Light enters the cavity directly through
the mirror substrate and at resonance it is concentrated on the cavity axis. Resonance
is obtained when the condition

mA
— =nL 10
5 (10)
is met. In equation (10), m is an integer (the order of interference), A is the wavelength
of the light, L is the length of the cavity and n is the refractive index of the medium
inside the cavity.
The use of the Fabry—Pérot cavity increases the optical path by the factor «
(amplification factor) [73] where
1+ R
a=—". 11
1—R (11)
Here R is the reflectivity of the mirror (assumed to be equal for the two mirrors). If R
~ 1, then

a=—", (12)
where & = Rf/(l — R) is the so-called finesse of the Fabry—Pérot cavity [69]. Finesses

up to 2X 106 have been measured in a cavity of few millimetres length [74]. It would
be preferable to have both a high # and a high L, so that the resulting optical path
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L’ = onL might be as long as possible. This concept is represented by the parameter Q,
the cavity quality factor, which can be written as
nLa L’
O=nmn ) b I (13)

Quality factors up to 5X 10!, corresponding to a finesse & of about 157 X 105 for a
cavity length L = 180 cm have been achieved [75]. This result was found with a
residual pressure of a few millibars in the cavity. To obtain a high amplification factor
a, the attenuation of light caused by the presence of the gas needs to be negligible when
compared with the intrinsic losses on the mirror reflecting surface. This puts, in
principle, a limitation on the maximum pressure of the gas sample, depending on the
wavelength of the light and the gas itself. For most gases, however, even a small
amplification factor is generally enough to guarantee a high-precision measurement.

To obtain a stable Fabry—Pérot cavity, a high relative stability between the
frequency of the laser and the resonant frequency of the cavity, given by v. = mc/2nL,
needs to be reached (c is the velocity of light). This can be done via electronic feedback,
by adjusting the length of the cavity or the frequency of the laser. Good relative-
frequency stability can be obtained by using the Pound-Drever locking technique
[76] and the recently commercially available neodymium-doped yttrium aluminium
garnet laser (Nd: YAG) (non-planar ring oscillator, NPRO) [77, 78]. This laser source
was designed to be tuned to a wide range around its central frequency of 2.8 X 104 Hz
(A = 10640 A). Spectral densities of the frequency difference between the laser and the
cavity lower than 1073 s in the frequency range 1-500 Hz can be achieved [79]. Using
these new experimental techniques one should be able to measure An directly [38].

Let us assume that the apparatus is made of a Fabry—Pérot cavity, in which a gas
sample is present, frequency locked to a frequency-stabilized laser source. The laser
light is linearly polarized by a polarizer prism before entering the cavity. The locking
circuit provides what is called an ‘error signal’, which is a voltage signal proportional
to Av, the difference between the laser and the cavity frequencies. Acting on the laser,
the same circuit maintains Av around zero. Let us assume, for simplicity, that the
entire optical path L is in the magnetic region, and that the transverse dipole field B
rotates around the propagation direction of the linearly polarized light beam with a
frequency Q/2 and phase 6,/2. Under these conditions the light sees a modulated
refraction index n(z):

- +
n(1) Euz—mcos(2nﬂt+ 0,) -+t

2

An
700s(2n()t+ 99)+n0 (14)

An
n (1 +—cos(2nQt+ 99)) .
2n0

Since An/2n < 1, the resulting v.(¢) will be

()~ 21— A o5 2+ 6,
e =~ _ ——C
% o L\ 2 ST 2

0

An
= vo(l——cos(2n(2t+ 99)), (15)
2n

0
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and finally
AUt — Ut A
UD W= MO Ao+ 0,). (16)
v, v, 2n0

To estimate the sensitivity of this kind of experiment, let us assume that Q = 1 Hz and
that the spectral density Av, of the difference between the laser and the cavity is of
the order of 107357 If v, = 28X 10% Hz, one obtains Av,,/vo = 3.6X 1071 s The
sensitivity of An/no is therefore 7.2 X 10”1 sk This means that the CME of helium at
STP with a magnetic field B = 1T, could be observed in a few milliseconds of
integration time, with a signal-to-noise ratio of about one.

In the last few years the effort to build ever larger accelerators for high-energy
particle physics has led to the development of superconducting magnets able to reach
fields of about 10 T in a magnetic volume of length several metres and section several
square centimetres [80]. Superconducting magnets are electromagnets based on coils
built with materials that, at temperatures lower than 4 K, exhibit an electric resistance
near zero and are thus capable of withstanding currents of several thousands of
amperes. Obviously, owing to the exceedingly high construction and maintenance
costs, superconducting magnets are available only for research groups at national and
international research laboratories. The studies in [29, 30] were carried out in such
laboratories, where there was access to two superconducting magnets. In the following
discussion, however, a suggestion is made for a feasible ‘desktop” CME experiment
based on permanent magnets. Nonetheless, the problem of modulating the ellipticity
¥ remains and, as we have seen, modulation is also necessary for the direct
measurement of An.

In [14, 29, 30] the amplitude of the magnetic induction field B was changed
by modulating the magnet driving current. Using superconducting magnets, the
modulating frequencies Q1in [29, 30] were 78+125 and 30-157 mHz respectively, and the
magnetic field flux was modulated between 1:94 and 2+48 T. In [14], where a standard
electromagnet was employed, the field could be modulated between about 0 and 03
T ata frequency of 0:397 Hz. An alternative set-up which enabled higher Q2 modulation
frequencies to be reached was employed in [18,23]. The whole 0.54 T dipole
electromagnet was rotated at a frequency Q' of 0900 Hz in [18] and 1.3125 Hz in [23].
The angle 6 between the polarization of light and the magnetic induction field B then
becomes

0=2nQt+0,. (17)

Using equation (2) it is apparent that ¥ is modulated at a frequency € which is twice
the rotation frequency Q' of the magnet and that 6, = 20,. The effect can be
modulated completely from — ¥ to + V.

One might think that rotating the polarization of the beam instead of rotating the
field B would be a much easier way to modulate ¥. Unfortunately, as already
mentioned, any optical element in the apparatus also acts as a birefringence plate.
Mirrors, for example, exhibit a local birefringence that in some cases can be as large
as 107+ [81]. To avoid measuring the birefringence of the optical elements, every optical
element of the experiment (mirrors, polarizers, etc.) would have to be rotated in phase
with the polarization direction. This is obviously a difficult task and has not yet been
accomplished.

A reasonable and cheap solution to the technical problem connected with the
rotation of a large electromagnet could be the use of permanent magnets. Nowadays
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magnetic materials with residual induction of 1.2-1.3 T are commercially available.
They can be machined and assembled to obtain a dipole field of about 1 T in a gap
of 5 cm between the poles [82]. Considering that no electrical or cryogenic connection
needs to be maintained while in motion, this kind of magnet could easily be rotated at
frequencies of several hertz.

In conclusion, a feasible, next-generation CME experiment could be performed
with a 10 cm permanent 1 T dipole magnet and a Fabry—Pérot cavity with a finesse of
about 3 X 104. The resulting ellipticity would be

2L . L .
Y= n_IAn sin (20) = naIAn sin (20). (18)
i

With A = 10640 1&, in a sample of helium at 10 mbar and room temperature, ¥ = 107°
rad. With a sensitivity ¥, = 1078 rad s:, ¥ could be measured in about 100 s, at a
signal-to noise ratio of about one.

Sensitivity in ellipticity is not sufficient to guarantee a correct measurement. Good
control of pressure, temperature and purity of the gas over the whole magnetic volume
during the entire experiment is also necessary. Lack of these controls seems at present
to be a possible explanation for the discrepancy between experiment and ab initio
values for gases such as neon and helium, where the effect is very small; see section 6.
In the case of neon, for example, the experimental value [29] is about half the
theoretical value [54, 55, 63].

In principle, one could calibrate the apparatus using a calibration gas as was done
in [18, 23, 30]. However, the experiment should be performed under exactly the same
conditions for the calibration (indicated by the superscript cal) gas as the gas under
examination, and the CME of the latter should be related to the CME of the former
by the formula

no———, (19)

where An is the anisotropy of the refractive index under the operating conditions and
(CM) indicates the CME in arbitrary units. The calibration gas should satisfy the
following two conditions.

(1) Its value of An should be known with precision either experimentally or from
theory.

(2) Its effect should be easily measurable with a precision higher than that sought
for the unknown gas.

When these conditions are not met, systematic errors can arise. For example, in
[18] and [23] the authors use two different values for the same reference quantity, the
CME of N2 at STP; that is the first condition is not met.

Using these arguments it is seen that the best candidate as a calibration gas, helium,
is not suitable since, although theory has been able to give an extremely reliable
estimate for its Cotton—Mouton constant [52], the CME experiment involving helium
is exceedingly difficult [30]. The situation is quite different from the electrical nonlinear
optical effects, where the results of calibration-quality calculations on small species
such as Hz, D2 [83] or He [84] have been published, and it is accepted that they may be
employed as references for the experiments [66].

Another cause of systematic errors arises when the reference value is given at a
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temperature 7' different from 7, that at which the measurements for both the sample
and the reference gases are performed. In this case, equation (19) should in principle
be rewritten as

] CM KT, T
Ay = Ay e (20)
(CM) ' F(T', T)

where F(T',T) are functions which take care of the temperature dependence and
subscripts 7(T ") are added to the observables. Equation (20) obviously reduces to
equation (19) for F(T', T) = “' F(T', T).If, for instance, the calibration gas is nitrogen,
for which “ F(T', T) is approximately proportional to (T'/T)2, and the other gas is
argon, for which F(T', T) is proportional to T'/T, the use of equation (19) leads to a
systematic error which should be carefully taken into account. This error may be as
large as a few per cent of the value for the observable in [18] and in [23]. However, the
experimental error in [18] appears to be larger than this possible systematic error.

3. Theory

The first theoretical description of the molecular orientation induced by an electric
or magnetic field, and which is partially responsible for both the Kerr effect and the
CME, was given by Langevin [39] in 1910. In fact, 2 years before the appearance of
Langevin’s paper, Voigt had explained magnetic birefringence as the effect of the
action of a magnetic field on the electrons of the sample [85] (the nonlinear effect
known as the Voigt effect). Langevin’s theory was valid only for perfect gases and it
supplemented Voigt’s ideas, by introducing the temperature-dependent molecular
orientational effect, which is far larger than the deformational effect predicted by
Voigt. A few years later Born provided a theory for the CME in gases of molecules of
arbitrary symmetry, by introducing magnetic hyperpolarizabilities [86] (see also [87]).
An account of these first years of the CME has been given by Beams [88], Cotton [89],
Germann and Metz[90] and Partington [91]. The essential reference for the theoretical
interpretation of the CME in gases has, however, been given by Buckingham and
Pople[40], whose analysis of the subject is, in a sense, an alternative to that of Born [86]
and follows closely the one that they had developed to account for the dc Kerr effect
[92]. More recently, Kielich [41] has discussed a general equation for the molecular
Cotton—-Mouton constant, containing factors which make it applicable to gases, gas
mixtures, liquids and solutions; Atkins and Miller [42] have published a quantum-
field-theoretical formulation of optical birefringence, including CME, and Chang [43]
has given a quite general description of the CME using a time-dependent double-
perturbation approach which allows for the study of the optical frequency dependence.
A quantum-mechanical expression for the Cotton—-Mouton constant, applicable to
any molecule, and which can be used to account for the effect in a paramagnetic species
by including the rotational dependence of the coupling between electronic spin and
molecular frame, has been developed by Kling et al. [16]. Recent references to different
aspects of CME theory have been given in the book by Bottcher and Bordewijk [67]
and the reviews of Williams [68] and Bishop [66].

The discussion in the next few paragraphs will be based on the work of Buckingham
and Pople [40], who employed a general theory of molecular polarizabilities in the
presence of a strong magnetic field to relate the anisotropy of the refractive index An to
the microscopic properties of the medium. They considered a diamagnetic molecule in
a closed-shell ground state, thereby avoiding Zeeman splitting; the effect of optical
dispersion was ignored and the translational and rotational molecular degrees of
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freedom were treated classically. The molecular energy U in a strong uniform external
magnetic field B with an electromagnetic field described by the uniform electric field £
(the associated magnetic field is neglected) can be expanded in a power series as [93]

U(t,E,B) = Uo —u E — ;'aaﬂEaEﬂ— ;XaﬂBaBﬂ
- zéaﬂnyaBﬂBy— g, wELEgB,Bs+ O[(E, B)3]. (21)
Einstein summation is assumed and p;, is the o (a = x, y, z) component of the electric
dipole moment vector, a,; and y,; are the tensor elements of the static electric
polarizability and magnetic susceptibility (magnetizability) respectively, &5 ,and 1,5 .5
are elements of the first and second hypermagnetizability tensors, and 7 represents all

configuration (orientational and positional) parameters. By differentiating equation
(21) twice with respect to E the differential electric polarizability is

Iy = Ot 15,58, Bst ... (22)

According to the Lorentz—Lorenz (or Clausius—M ossotti) equation [94], the refractive
index n of a gas is related to the macroscopic electric susceptibility and thus to the
microscopic molecular differential electric polarizability IT° by

2 1+4 N I (23)
n2 g = ——J1°.
¢ " (4ne ) Vi

In equation (23), ¢is the dielectric constant, N, is the Avogadro constant and V, is the
molar volume. The difference of the refractive indices in the two directions (parallel
and perpendicular with respect to B) can be written as

T 24
nji—n, = glr-ef2x n(4ns)V , (24)
0 m

where ATT is the difference in the polarizability for the two field directions and the bar
denotes an average over a statistical distribution of molecular orientations:

AT = UAne(r, B)exp {— U(x, E, B)/kT}dr)/(Jexp{— U(x, E, B)/kT}dr). (25)

Here k is the Boltzmann constant, 7 is the temperature and, introducing the unit

|
the magnetic field,

vectors e, and ei in the two directions, parallel and perpendicular to the direction of

AT (z, B) = ITielef—eted). (26)

Buckingham and Pople [40] defined the molar Cotton—-Mouton constant ,,C as

2(n)—n)) (4ne )V _ 21N, (AT
WC = lim( (7~ n,) (4me,) )= 1 A( : ) : (27)
5, 27B2 27 0B2 By
By taking the orientational average they showed that An could be written as
_ B mBN (o L v
2ama)"C ™ Vitama) | o) g G en™ S0 )
nB2N ,

=————[An+ a, ¥ . 28
Vm(4TE80) ( n SkT( aﬂ%aﬂ 3 aaxﬂﬁ)) ( )

The hypermagnetizability anisotropy Anis defined as

AN = F Mo, ap™ T e, ) (29)
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For axial molecules,

nB2N ,
n = An+
Vm(47t80) 15kT

Aan), (30)

where Aa = a,,— oy and Ay = y..— xx, and z and x are molecular axes, the molecule
being placed along the z axis. The first term in equations (28) and (30) describes the
effect of the magnetic field on the electric polarizability, and it is generally much
smaller than the temperature-dependent factor. There are some notable exceptions to
this ‘rule’ (see for instance HzO [60]). The second term in equations (28) and (30)
represents the Langevin temperature-dependent contribution, that is the orientational
effect of the external fields on the molecules. The Langevin contribution vanishes
exactly for atoms and ‘spherical’ molecules, that is molecules of cubic or icosahedral
symmetry for which the anisotropies of the electric polarizability and magnetizability
vanish. In these cases, equation (30) reduces to

_mBN, o mBeN,
Valdne) " Valdnz)

An (T)227 2z~ T)227 xx) (31)

Since T)zzyzz = T)xxyxx = T)yyyyy and T)227 xx = T)227 yy = nxxyyy =
The number of non-vanishing independent elements of the hypermagnetizability
tensor m is, in principle, 36 (and not 81), owing to the intrinsic permutability of the a,
Band y, sindices (i-€. Ny 15 = Mpoyyo Nop, 6y = Mpansy)- M 0lecular symmetry further reduces
this number, since most components vanish and many of the non-vanishing
components are related. The number of non-vanishing independent components of n
for a given molecular symmetry can be determined by group-theoretical techniques
[95]. In axial systems, for instance, only six independent non-vanishing components
exist [48]:
T)xx,xx = nyy, Yy :': T)zzyzz,
T))(nyy = T)yy7 XX
T)xy7 Xy = nxyyyx = T)yxyyx = T)yxyxy = ;‘(nxxyxx_ nXX,YY) = ;(nyy,yy_ T)%V, XX)’ (32)
T)XX,ZZ = T)yy7227
T)xz,xz = T)xzyzx = T)yzyyz = T)yzyzy = T)zxyzx = T)zxyxz = T)zyyzy = T)zyyyza

T)227 xx = T)zzy yys

where again z is the internuclear axis and equation (30) becomes
AT) = ?;(7nxx7 xx Snxxyyy_'— 27/)22722_ 27/))()(722_ 27/)227 xx+ 1277)(77 XZ)' (33)

Tables of the non-vanishing independent components of n and of their relationships
for different molecular symmetries can be deduced from those given for the only
slightly more complicated case of the nuclear magnetic shielding polarizabilities by
Raynes and Ratcliffe [96].

For an ideal gas, equation (30) can be rewritten as

nB2P [ An 2

An = —=
"7 dne \kTT 15T

AaAy|, (34)
where P is the pressure of the gas. The first term depends on the inverse of the
temperature while the second depends on the inverse of the square of the temperature.
The relative importance of the two terms changes from molecule to molecule. As
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mentioned before, for HzO vapour at room temperature the first term appears to be
about ten times larger than the second term, while for N2 under the same conditions
the first term contributes only a few per cent to the overall effect [60]. Since in the case
of atoms the second term in equation (34) vanishes, An shows a pure 1/7 dependence
at constant pressure.

The Cotton—Mouton constant in non-ideal gases has a slightly more complicated
dependence on the temperature and on the microscopic properties. The quantum-
mechanical analysis of Kling et al. [16] becomes essential for molecules with small
moments of inertia, where quantum corrections to classical behaviour become
important. The reader can find in [16] a detailed derivation of the expression for the
Cotton—-Mouton constant, as well as a discussion of the limiting behaviour at high
temperatures. In the approximation of linear rigid rotors with negligible centrifugal
distortion of the molecular parameters, equation (30) becomes [17]

an =B (21— ottt ) AaA
n = -
Valdra)\ =T 1skrt T80 *ox
2 g3 13
———(l—*o—*c*+... A 35
Tskr L IOTEO ) A (33)

= BNy [t —— A
Valdme)\ " tskT S E0E |

where B. is the rotational constant, g u, is the gyromagnetic ratio (u, is the nuclear
magneton), o = hB./kT and

g3 13

Aoy = (1_G+'§'62+..,)Ax_(l_:G_j;ﬁz‘i'...)th .

(36)
The first correction term in equation (36) is precisely analogous to that for the
corresponding term in the Kerr effect [97] and, even if truncated to the first order in o,
can be quite influential and it affected the results of the CM E measurements of N2 and
CO up to one standard deviation [17]. The second term in equation (36) describes the
orientational influence of the rotational magnetic moments and is negligible in
molecules which do not exhibit large rotational g factors. The case of paramagnetic
gases requires a complete quantum-mechanical analysis. Some extra (paramagnetic)
terms arise in the expansion of the refractive index, equation (35), and in general these
gases exhibit a strong temperature dependence. Examples are seen in the studies of the
CME in O, [16, 28] and NO [20].

The pressure dependence of An is always linear for an ideal gas. The case of a non-
ideal gas is treated both theoretically and experimentally in [25]. The Cotton-Mouton
constant is expanded in terms of the number N of moles per unit volume. This
introduces the Cotton—-Mouton virial coefficients 4., B, Cq, ... :

wC=Ac+B.N+C N2+ ... (37)

Equation (37) is analogous to the earlier description of the molar Kerr constant K
[98]. The first virial coefficient 4 is the term in equation (27). Expressions for the
second virial coefficient B can be found in [25, 41]. A detailed experimental study of
the density dependence for hydrogen has been given in [25].

It has already been mentioned that in molecular systems the Langevin term in the
refractive index anisotropy can be by far the largest contribution. It is related to the
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electric polarizability and magnetizability anisotropies. There is a vast literature on
experiment, theory and computational techniques for these second-order properties. It
is beyond our scope to give a detailed discussion of this topic but, since we are
concerned with all aspects of the CME in gases, and since we are going to compare
experiment and theory, we shall have to introduce estimates of the electric
polarizability and magnetizability anisotropies later. Our attention, for the moment,
will be focused on the hypermagnetizability i, a quantity which is far more difficult to
compute and much less popular in the scientific literature.

Asis implicit in equation (28), An depends on the wavelength of the light, owing to
the o (= 2nc/A) dependence of the microscopic properties nand a[99]. An equation
equivalent to that for the energy, equation (21), can be written for the polarization
when the fields oscillate. The polarizabilities introduced in equation (21) are then
explicitly dependent upon the circular frequencies (o ;below) of the fields. In particular
the hypermagnetizability tensor m, which is composed, as is y, of a paramagnetic
(indicated by a superscript p) and a diamagnetic (indicated by a superscript d) part, is
written as

na/i, yb(w) = 772/3, yb(_ (O w17 w27 w3)+ 772/3, yb(_ [P wlv wz)a (38)

where w_, = X .o . In the Cotton—-Mouton experiment, equation (38) becomes
c JT

Mg, 74 @) = Moo = @3 ©.0,0)+ 1 o — @ @, 0). (39)

Note that indices a, Bare associated with the electric perturbation, while indices y, S are
associated with the magnetic perturbation.

Explicit expressions for m, o — @43 o,0,o,) and 772/3, W~ w0, 0)in terms of
sum-over-states expansions involving matrix elements of the dipole moment, magnetic
moment and diamagnetic magnetizability operators have been given by Bishop et al.
[50]. Following the perturbative treatment of Orr and Ward [100], and in the presence
of the double perturbation,

== FE—"-B— oo,
H=—-p-E-p -B—%Bx"B. (40)

Bishop et al. obtained

772/3, yb(_ [OFH COI, Ct)z, w3) =

iy ¥ <gliaglm><ml i ln><nli? o ><plislg>
P

1
h3 mnpy(+e) (Ome ™ 0N@p— 0~ 0 )0y~ o)

5 <glfislm><ml @3 lg><glal In><nlizlg> R
m, n(#g) (wmg_ COO.)(COng_ wl)(w"g+w2)
1 ~e 74 ne
772/3, yb(_ [ COI, wz) = ;2 2 <q"u0<’m ><m’x7‘>’n ><n"u6’q>’ (42)

P m, n(+g) (wl"g_ wo—)(w"g_ COI)

where w,= o, = 0 in the CME experiment. The dipole moment operator is

o= = lel X (43)

rfa = (r;,,— Rg, o) and denotes electronic coordinates with respect to the gauge origin
(G), r; 4 1s the a coordinate for electron i and R , is the o coordinate of the gauge

origin. The magnetic moment operator is

A

= —EZI?M- (44)

2m.
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Here lfa = ga,,yrfﬁpiyy is the a component of the angular momentum operator of
electron i, g,5, denotes the third-rank alternating tensor, and p, , is the ycomponent of
the linear momentum operator of electron i. The diamagnetic magnetizability operator
is

B
)Ei/s: _";’1521[(”1_ R85~ "?,a"?,/s]- (45)
In equation (41), X ,indicates a sum over all the terms obtained by permutation of the
four pairs (— w,, i.), (wl,ﬁ;), (@, a,) and (cog,ﬁ;‘). In equation (42), X, indicates a
similar permutation ofthfr three pairs (— w,, [i.), (0, ﬁ;) and (@, )2‘;5). The bars indicate
the fluctuation operator jr = fi— <gm’g>, the exclusion of the ground state contribution
g in the summations is indicated explicitly, the ’n> are the electronic excited-state
wavefunctions and hw,, = E,— E,are the energy differences.

Equations (41) and (42) can also be obtained using the formalism of response
theory (see for example [101]). By adopting the notation and conventions of [102] and
by neglecting, for simplicity, the dependence on the gauge origin, they can be rewritten

as

o — @5 ©,0,0) = = +Crirp LIS 0 (46)
niﬁ,yo(_ 0;0,0) = — 1—<<ra; g, (r2575_ ryr§)>>— 00,0 47)
where the sum over the electrons is implied and the quantities in double angular
brackets are appropriate cubic (equation (46)) and quadratic (equation (47)) response

functions [102]. All the above equations refer to a diamagnetic species.
Equations (41) and (42) or, equivalently, equations (46) and (47) could be used in
principle and were used in practice in some cases, to compute the hypermagnetizability

n. Bishop et al. [50] were able, for instance, to study the frequency-dependent
hypermagnetizability anisotropy of H, and D,. The recent development of the cubic
response approach [63] is also very promising in this respect. Frequency-dependent
hypermagnetizability anisotropies of CH , NH , HzO, HF [61] and the rare gases and
some of their isoelectronic species [63] have been computed using this approach.

In the general case the determination of the paramagnetic contribution to the
hypermagnetizability anisotropy proves to be a formidable task but, for systems
possessing spherical symmetry and below the first resonant frequency, A1 reduces to
the more tractable Cauchy-type moment expansion [51,52,103]

+d2a(— 0;0)
+ dw? N

Af(w) = — —;i 2n+1)(2n+2) S(—2n—4) (h“’)z . (48)

Ey

n=

Here S(—j) indicates the appropriate Cauchy moment (sum rule)

J

S(=)= X fa (E—) (49)
n(# 2) B pe

and f, is the oscillator strength. The connection between the frequency-dependent

electric dipole polarizability a( — w; ) and m is explicit in equation (48).

The relation between the diamagnetic hypermagnetizability and the dipole—
dipole—quadrupole polarizability [104] was first given by Fowler and Buckingham [48]
for ® = 0 and generalized by Bishop ez al. [50] for the dynamic quantities. The ‘traced’
dipole-dipole—quadrupole hyperpolarizability is defined as [105, 106]

B d®) = = Kri Ty ot > i (50)
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and the usual (‘traceless’) dipole—dipole—quadrupole is

B, {0) = =Ly srp (gryr5—§r25y5)>>_w;wyo. (51)
By comparing with equations (47) it is apparent that
Mg, (@) = ¥[Bop @)= By (@), (52)

The connections between the traced and traceless tensors defined above have been
widely discussed in the literature [104]. When y + &, 772/3, ,scan be expressed in terms of
B alone [48], for example for an atom or spherical molecule

niy, w= T By = — B, (53)

where B is the scalar dynamic dipole-dipole—quadrupole hyperpolarizability. The
dynamic diamagnetic hypermagnetizability anisotropy for molecules of arbitrary
symmetry can be written as

Af(0) = =B,y o) = —*B(w), (54)

where E(a)) is the isotropically averaged dynamic B polarizability.

The dependence of Anon Acannot in general be easily predicted, but in the optical
region the variation in Anshould, in principle, be small, especially if compared with
error in the experimental value. For example, in the case of argon, data taken from
both [55] and [58] show that Anchanges by less than 1% when A varies between 10 640
and 4880 A.

Molecular vibrations affect nonlinear optical properties, such as the hyper-
magnetizabilities discussed here, via both the zero-point vibrational averaging of the
calculated properties and the effect of the radiation on the vibrational motion. This
last interaction gives rise to the vibrational hypermagnetizabilities. This whole subject
is receiving increasing consideration, especially since vibrational contributions to
physical observables and to the magnetically induced birefringence in particular are
often far from negligible. A review of the literature and a broad discussion of the topic
has been given by one of us elsewhere [66, 104]. Only a brief summary of the main
points is given here.

Electronic state properties in molecules are usually computed in the fixed nuclei
Born-Oppenheimer (BO) approximation. A comparison of theory and experiment
requires that the results obtained at fixed internuclear distances be corrected for
vibrational effects. The zero-point vibrational correction of a given electronic property
P can be estimated via the expectation value (generally over the ground vibrational
state)

P = <u0)|Pu0)>. (55)
For diatomic molecules the ground-state vibrational wavefunction (0) is often

obtained using the Numerov—Cooley method [107, 108]. If we wish to take rotation
into account, then we write, for diatomics [50],

An= 2, p()<U0, D|anu0, 1>, (56)

where the uv(0,J) rovibrational wavefunctions are obtained by a Numerov-Cooley
solution of the rovibrational Schrodinger equation, J being the rotational quantum
number. In equation (56),
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—(E_,—E —(E, ,—FE
p(J)=[g,(2J+1)exp( ( e )]/[gg,(2J+l)exp(—(‘*‘kT—“l ] (57)

Here E;is the rovibrational energy and g, is the nuclear spin degeneracy factor.
The formula for the pure vibrational contribution to the hypermagnetizabilities
n of diamagnetic molecules, obtained as described in detail in [57, 59] (see also [109]) is:

—
na/i, 78 b

2 [(.ua) "g(éyb‘ B) ng + (,uB) ng(éyb‘ a) ng + (aaB) ng(%y()‘) ng]
n¥g

@,

= z z (,ua)gm (Xyb) mn (,UB) ng + (,ua) gm(.uB) mn (Xyb) ng + (,UB) gm(.ua) mn (Xyb) ng '

11

(58)
m¥+gn*g Oy O,

(X)) mn denotes here the vibrational transition moment between the m and n vibrational
states for the property X, that is (X),, = <u(m)’X’u(n)>, while 4w , 1s the vibrational
transition energy. For homonuclear diatomics, with no permanent electric or magnetic
dipole moment,

o 2 ¢ (0p) ne(Xy5) e
na,;,yf;Z ; o (59)
n¥g n

and, for the hypermagnetizability anisotropy, one obtains [48, 50]

,_ 4 (Ad) e (AY) s
An' =T )y
154 45, W

(60)

The vibrational contribution to the CME of some molecular systems have been
estimated by Fowler and Buckingham [48)] (Hz), by Bishop et al. [50] (H2 and D2) and
by Cybulski and Bishop [57] (H2, Nz, HF and CO), always within the BO
approximation. Bishop et al. [50] suggested that the effects of the breakdown of the BO
approximation on the hypermagnetizability anisotrophy of H2 and D2 would be
negligible. Spin—orbit and intermolecular interactions have been neglected in all
theoretical treatments of CME so far. It should also be noted that the Aaand Ay terms
in equation (30) should be zero-point vibrationally averaged as well as include any
pure vibrational contributions, as will be the case for polar and/or paramagnetic
molecules.

In general and in finite basis set calculations with a standard gauge-dependent
approach, both the paramagnetic and diamagnetic contributions to the magnetiz-
ability yx and to the hypermagnetizability n depend on the choice of magnetic
induction origin R, which enters equations (44) and (45). Gauge-independent results
can be obtained provided that certain constraints (sum rules) are satisfied, as discussed
in [57, 110, 111]. Cybulski and Bishop [57] showed how, for homonuclear diatomic
molecules, the diamagnetic contribution (') to the hypermagnetizability is magnetic
gauge origin independent while, for heteronuclear diatomics, 7 depends linearly on
the change in gauge origin. The dependence of 1 is slightly more complicated.
Magnetic gauge origin independence of the results is guaranteed [112] by the use in the
calculations of explicit-perturbation (magnetic-field)-dependent basis sets, as, for
instance, the London atomic orbitals (LAOs) or gauge-invariant atomic orbitals
(GIAOs) [113-115]. By employing LAO, gauge-origin-independent basis-set-limit
results for magnetizabilities and hypermagnetizabilities can be obtained with the use
of relatively small basis sets [60, 64, 65]. The very recent application of the continuous
transformation of origin of current density approach to the analytical determination
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of gauge-origin-independent hypermagnetizabilities, although currently limited to
first-order electric field perturbed magnetizabilities, should be mentioned for its
possible potential [116].

Recent developments in theoretical and computational methods have enabled ab
initio studies of a wide variety of atomic and molecular electric, magnetic and optical
properties to be undertaken [66]. Thus ab initio calculated values not only of Ax and
Ayxbut also of Anfor some gases are available at different levels of accuracy. The main
difficulties arise in the calculation of An, whose importance in the description of the
CME increases as the spherical character of the system increases (i.e. the symmetry of
the system becomes higher). There are only a few electron-correlated calculations of
the hypermagnetizability anisotropy in atoms and small molecules. For most systems,
calculations have been restricted to the self-consistent field (SCF) approximation.
Electron correlation plays an important role in the description of the high-order
magnetic properties involved in the CM E. Apart from the results obtained by Bishop
and co-workers [50, 52] for the frequency-dependent hypermagnetizabilities of H2
(Dz) and helium with explicitly electron-correlated wavefunctions (ECWs), the
approximations employed to compute correlated hypermagnetizability anisotropies
Anare the second-order Meoller—Plesset (MP2) theory (H2, Nz, HF, CO [57], He, Ne,
Ar [56]) or the multiconfigurational self-consistent field (M CSCF) response theory
(neon [54], argon [58], Nz, C2H2, HCN, HzO [60], CO, CH [64] and C2H4 [65]). Very
recently third-order Moller—Plesset (M P3) and linearized coupled clusters (doubles)
theories have been applied to Hz, Nz, HF and CO [62]. In [57], frequency-dependent
molecular hypermagnetizabilities were computed, as second derivatives of the
electric dipole dynamic polarizability with respect to a static magnetic field. A
mixed analytical-numerical finite-magnetic-field approach was employed. A finite-
electric-field technique, which cannot be used to obtain frequency-dependent
hypermagnetizabilities, was used in [60, 64, 65].

There are some discrepancies between the values computed for the same quantity
by different authors. In the case of helium, the value of Anfrom [55] and from [52],
both at the correlated level, differ by about 3%, and in this case one would expect that
most of the discrepancy arises from the difference between the MP2 approach and the
more exact explicitly electron-correlated approach. For larger systems the choice
between essentially equivalent approaches is much less obvious; see, for instance, neon
[54, 56] and argon [56, 58]. When comparing theoretical and experimental values, one
should realize that both carry error bars. In [54] the error on Anfor neon was evaluated
to be of the order of about 5%. On the other hand, often these uncertainties are
smaller than those accompanying the published experimental values. As an example,
the experimental value for the CME of helium published in [30] has a 20% error bar.

4. Definitions and units
Different definitions and units can be found in the literature for the quantities dis-
cussed here, and a short section on notation and conventions seems to be appropriate.
Our references for this section are the ‘green book’ edited by Mills ez al. [117] and the
review by Cohen and Taylor [118]. Some experimentalists employ a Cotton-Mouton
constant C, defined [14] through the equation

An = ACy B2 (61)

Coy 1s usually given in emu units, that is G™2 cm™ L.
Theoreticians usually refer to the Buckingham and Pople ,,C molar constant [6]
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which is defined in equation (27). In [6, 12], ,C was given in emu units of cm3 G™2
mol !, or more correctly cm3 G™ 2 mol™! (47{80). Elsewhere [19, 21, 22, 26-28, 31-33]
a definition of ,C is referred to equation (27) for a refractive index n of the
unperturbed medium such that n— 1= 0. The two definitions are formally
different when n—1 # 0. The SI units m5A 2 mol ! are also often used for ,,C.T The
appendix in [20] and a specific section on units in [21] discuss in some detail the
relationships between emu and SI units employed in CME. Konig [7] introduced a
different definition of the molar Cotton—-M outon constant, indicated here as ,,C’, for
the case of refractive index n of the unperturbed medium such that n—1 = 0, that is

3B2

An=—"———"—"nC
2Vw(4ne)

. (62)
= C ' 1s given in units of cm3 G™2 mol ! in [15-17, 20, 25] and units of m3 T"2mol ! in
[13]. It is straightforward to see that

nC’'=9,C. (63)

The formulae linking C, and ,,C are (with the temperature in kelvins, and the
wavelengths in centimetres)

i _ 0-164 518 e i
Cnu(G2cem™?) = TmC(cm3G 2mol ! (4ng))), (64 a)
_ 0164518 X10°2

Con (G 2em™Y) AT

»C (M3 T 2mol ! (47g,), (64 b)
_1:04182X 100

Cen (G 2em™Y) AT

nC(m3A 2mol™1). (64 ¢)
To introduce explicitly the temperature 7 we have assumed a pressure P of 1 atm and
ideal-gas behaviour. As seen above for An, the Cotton—-Mouton constant depends
linearly on the pressure.

In the next section we report and discuss (where possible) only the value of An,
which is, by definition, dimensionless. When comparing different results we always
refer to An given at B=1T and P = 1 atm. We label this reference as An,. The
relation between An and An, is

M)z . (B(G))2 . ( B (au)

An(P = 1atm) = A
n( atm) n“( 1T 104 G 4425438 X 10" 6 au

2
. (65)
The relationships between An, and the Cotton—-Mouton constants introduced before
are
An, = AX108C, (G 2cm™), (66 a)
_ 164518 X 107

n, T mC (cm3 G_2m01_1(47t80)), (66 b)

104182 X107

n, P nC(m3A 2mol 1), (66 ¢)

1 The use of these units is incorrect and should be discouraged, since they are based on the
use of the magnetic field A (whose SI unit is A m™!) rather than of the magnetic flux density B
(ST unit T).
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The microscopic properties An, Aa and Ay are usually given by theoreticians in
atomic units (au) (often called ‘natural’ units) [119]. From equation (34), the following
relation holds for axial molecules between An, and An, Aa, Ay given in atomic units:

6-18381 X 10"« 421031 X 10+
= An+ Aa

. Ayl (67)

Ny
To end this section, we give the conversion factors from atomic units to certain other
units:

lau of a = e2a2E ' = 1:648 78 X 10°# C2m2J"1 = 1.48185 X 10" * (4ng ) cm®.
lau of y = e2a?m,! = 7-89104 X 10°2 JT 2 = 7.891 04 X 10"* erg G"2.

lau of n = etaim Ey2 = 2298425 X 1072 C2m2J 1T 2 = 268211 X 10" # (4n¢))
cm3 G2,

lauof £ = Ehe_laz)l ~ 514221 X101 Vm ! = 171526 X 107FI“CII1_2(4’E80)_1.
lau of B = he'la 2~ 2:35052X10°T =~ 2:350 52X 10°G.

5. Review of published data

In tables 2-5 the values of An, extracted from the experimental data found in the
literature for gases are given. We began our search from the 1967 paper of Buckingham
et al. [6] and restricted it to international journals.

In some cases, experimentalists have derived values for the microscopic properties
from measurements of the Cotton-Mouton constant, that is from measurements of An.
In order to be able to do this, one has to make some assumptions. For example in the
case of molecules, from the values of An as function of temperature, one could in
principle obtain Anand a value for the product Aa Ay. To get the value of Ay, one has
to assume a value for Ac or vice versa. Usually the unknown value must come from a
different type of measurement. If the value of An has been measured at only one
temperature, to extract a value for one of the three microscopic properties, the other
two must be estimated independently. In the case of atoms, since An depends on only
An, the connection between macroscopic and microscopic properties is straight-
forward. In tables 2-5 we report only values of the quantity An,. An analysis of the
different assumptions made to extract An, Aa or Ay is beyond the scope of this
review.

For simplicity, when measurements were done at different temperatures, only the
result at the temperature nearest to room temperature (293.15 K) is listed. The reader
should refer to the original paper for further information. Where the experimental
value has an error larger than 50% of its value, we refer to it as a limit, meaning that
its statistical significance is so poor that the result can only be used as an upper limit
for the physical effect. This criterion was not applied to the data on SF6 taken from [6]
since it is the only existing value of the property for this gas.

In table 6 we collect the values of Anpand An, resulting from theory for atoms and
in table 7 the values of Aa, Ay and Anfor molecules. With the development of powerful
computational techniques in the past few years, quantum chemists can now compute
Aaand Ay quite easily and, with more difficulty, An. Recovering An, is straightforward
in the case of atoms; see equations (31) and (65). In the case of molecules, on the other
hand, theoreticians do not usually give the value of the physically measurable property
An but report the separate values of the microscopic properties. Only in a few cases
are all three properties included. In preparing table 7 we had to decide whether to
include only data taken from these sources or to extend the list to other systems, for
which the values of the anisotropies are available from different sources. We decided
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Table 2. Experimental values of An, for inorganic species.

. T range
Species Formula Reference A(A) T (K) An, (K)
Helium* He 30° 5145 27315 (1804 0+36) X 10716 ©
Neon* Ne 29°¢ 5145 29815 (2:83+0.15)X 10716
Argon' Ar 188 5145 27315 (684 1:0) X 10715 "
Krypton' Kr 18 5145 27315 (994 1:1)x 1078 "
Xenon* Xe 18 5145 27315 (22940-10)x 107 ="
Hydrogen H, 23¢ 5145 273-15 (8:28+0.57)x 10715
25 6328 286 (8.824+0.25)X 10" 187-402
Deuterium D, 23¢ 5145 273-15 (7.2540:72) X 107151
25 6328 285 (10:0440-75) X 10715 285-369
Carbon monoxide CO 6 5461 29315 (—2:2440-45)X 10"
17 6328 294.15 (—19040-12)X 10718 203-393
Ik 6328 293:15 (—1-8040:06) X 1071
Nitrogen N, 6 5461 293:15 (—24740-17)X 1078
' 6328 293:15 (—2:3740-12)X 1078
13 6328 293:15 (—3:0640442)X 1071
14 5145 29015 (—2:5640-13)X 1078
16 6328 293:15 (—2:6240-08)X 10718  203-393
17 6328 294.15 (—244340-12)X 10718 203-393
29 5145 29815 (—2:2640-10)X 1071
* Also see the experimental estimate cited in [52] as a private communication from W.
Hiittner: An, (He) = (+2:5£2:5)X 10" at 27315 K and A = 6238 A.
® Limits can also be found in [6, 18].
¢ Given relative to N but measured at different temperatures; An, (N ) assumed equal to

— 2 26>< 10”1 at 298-15 K the authors scale the two gases differently Wlth temperature.
4 Also see the experlmental estimate cited in [52] as a private communication from W.
Hiittner: An, (Ne) = (+9:34+6:8) X 10" 16 at 273-15 K and A = 6238 A.

¢ Limits can be also found in [18].

" Also see the experimental estimate cited in [52] as a privatg communication from W. Hiittner:
An, (Ar) = (+5940:3) X 10"5 at 273.15 K and A = 6238 A.

¢ Limits can also be found in [6].

" Measured at room temperature and relative to N,, assuming that An, (Nz) = —262X10"8
at 273-15 K.

' Also see the experimental estimate cited in [52] as a private communication from W.
Huttner: An, (Kr) = (+1024+0-7) X 10" at 273-15 K and A = 6238 A.

¥ Also see the experimental estimate cited in [52] as a private communication from W.
Hiittner: An, (Xe) = (+24.1+1:2) X 1075 at 27315 K and 1 = 6238 A.

' Measured at room temperature and relative to N,, assuming An, (Nz) = —2.7X10" 8 at
27315 K.

' As reported in [17].
on this last option. We selected all systems for which ab initio estimates of An were
published, and associated with these estimates the values of Aoaand Ay provided by the
same or different workers. We believe that, even if the data might come from different
workers and different techniques (meaning different levels of accuracy), all together
they furnish reliable reference values for the physical quantity and can be of help to the
experimentalist. We list, in most cases, correlated results, and only when these are not
yet available will the reader find SCF estimates.

Some of the ab initio results for the anisotropies in table 7 include the vibrational
contributions, as discussed above. The vibrational corrections to the electronic
properties may in some cases be non-negligible and should be taken into account when
comparing theory and experiment.
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Table 3. Experimental values of An, for inorganic molecules.
. T range
Molecule Formula Reference A(A) T (K) An, (K)
Nitrogen NO 20 6328 293.15 (2:084+0-02) X 10711 188-393
monoxide
Oxygen o, 14 5145 290415 (—2+5240406) X 10712
16 6328 294 (—2:5240:06) X 10712 200-400"
28 6328 298.6 (= 2:5640:04)X 10712 298+6-463+7
Carbon dioxide Co, 6 5461 293.15 (—5614+0:28)X 10" 1
11° 6328 293:15 (—5614+0:25)X 10" 1
13 6328 293.15 (—5904+0:94)X 10" 18
17 6328 294+15 (—5904+0-12) X 10"  203-393
Carbon disulphide CSZ 17 6328 294.15 (—7-83+0-12)X 1072  203-393
11° 6328 293:15 (= 7174012) X 10712
Carbonyl sulphide OCS 13 6328 293:15 (= 1:774£0:21)X 10712
17 6328 294+15 (—1+814+0:03)X 1072  203-393
11° 6328 293:15 (— 1:6140:06) X 10712
Dinitrogen N,O 6 5461 293.15 (— 14640:03) X 10712
monoxide 13 6328 293:15 (—1:324018)X 10712
17 6328 294+15 (—1.374+0:03) X 1072  203-393
11° 6328 293:15 (— 1:2740:02) X 10712
Sulphur SF, 6 5461 293.15 (= 794+45)X 10" 1+
hexafluoride
* Also measured at liquid-nitrogen temperature.
® As reported in [17].
Table 4. Experimental values of An, for organic molecules.
o T range
Molecule Formula Reference A(A) T (K) An, (K)
Methane® CH, 26° 6328 29444 (1.5940:21) X 10"
Acetylene CH, 15 6328 293415 (—2:034+0-11)X 10" 193-393
33 6328 293+1 (—1:9840:08)X 10"  293.1-442.2
Ethylene CH, 6 5461 293+15 (2474 0:24)X 10" B
11° 6328 293.15  (2:964+0:22)X 10" B
15 6328 293+15  (3.134+0:06)X 10" 193-393
Ethane CH, 6 5461 293415 (— 7.864+2:24)X 1071
11° 6328 293+15 (— 1:204+0-11)X 10"
15 6328 293415 (— 1.484+0-09)X 10" 193-394
Methyl fluoride CH,F 31 6328 296:1 (—6:9740:21)X 10"B 2961, 29642
Propine CH, 13 6328 293+15 (— 1154+ 0-16) X 10" 2
Oxirane CHO 32 6328 29346 (3204 0:25) X 10" 292.7-447+6
Dimethyl ether C,HO 32 6328 29449 (—2:9340:04)X 10"B  294:9-414.5
Methyl chloride ~ CH_CI 26¢ 6328 29446 (—53440:07)X 10"B8  252.0-4076
Isobutane CH 13 6328 293415 (—1:34+0-8)X10™ 2
Dimethyl CH, 32 6328 2932 (—4964+0:45)X 1078  293.2-443.9
sulphide
Furan CH O 32 6328 2946 (5274 0-01) X 1072 294+6-445.0

* Also see the experimental estimate cited in [52] as a private communication from W.
Hittner: An, (CH)) = (+1:09£0:07) X 10" * at 27315 K and 1 = 6238 A.
® Limits can also be found in [6].

¢ As reported in [15].

4 Limits can also be found in [31].
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Table 5. Experimental values of An, for organic molecules.
. T range
Molecule Formula Reference A(A) T (K) An, (K)
Cyclopropane CH 6 5461 293.15 (654 1.4)X 10° 1
21 6328 2955 (3:31+0:05) X 10" 261.4-404.3
Benzene CH, 12 6328 293¢15 (1294 0+06) X 10" 11
13 6328 293 (1:514+0404) X 10711
19 4416  300-1 (1:504+0:04) X 10" 300+1-455-5
Thiophene CHS 32 6328 294.1 (94954+0:14) X 1072 294.1-446-0
Cyclohexane Ho, 27 4416 4002 (—4.631+0:26)X 10" B
Methyl bromide CH_Br 31 6328 2942 (—6:94+0:18)X 1071+  294+:2-421+7
Fluorobenzene CGHSF 22 4416 4039 (7844 0:16) X 10712
22 6328 4056 (74454 0:15) X 10712
Chloroform CHCI 26 6328 319 (= 1134005 X 10722  319:0-471:2
1,3,5- CH.F, 12 6328 293.15 (1004 0+04) X 10" 11
Trifluorobenzene 19 4416 3038 (1084 0:03) X 10711 303+8-455-5
Methyl iodide CH,I 31 6328 2953 (—110+0+04)X 10722 295.3-466-8
Carbon CcCl, 26 6328 39646 (794 2:4)X 10714
tetrachloride
Hexafluoro- CF 12 6328 293¢15 (8814 0+38) X 10" 2
benzene 19 4416 3041  (10+1140:17)X 1072 304+1-453.3
Table 6. Theoretical values of Anand An, (at T = 273.15 K) for atoms and atomic ions.
Species Symbol Reference Method A (A) An (au) An,
Hydrogen H 45, 48 Exact 00 13.33 3.0178 X107
Helium He 52 ECW* 00 106061  2.40113X 10716
52 ECW* 6328 105791  2.39501 X 1071
55 MP2°¢ 5145 1.0287 23288 X 10716
51 ECW! 00 1:06 2:40X 10716
Neon Ne 54 MCSCF® 5145 2:670 6:04 X 10716
55 MP2°¢ 5145 3.034 6:869X 10716
55 MP2° 6328 3.029 6:858 X 10716
Argon Ar 58 MCSCF® 5145 2414 5465X 10715
55 MP2°¢ 5145 25470 5818 X 10715
55 MP2° 6328 25468 5814 X 10715
Krypton Kr 56 SCF' o0 48461 1101 X 1071+
Xenon Xe 56 SCF' oo 1177 2:665X 1071
Hydride anion H” 63 SCF* o0 3526 74982 X 1071
Lithium cation Li* 51 SCF" 00 0016077 36396 X 10" ®
63 SCF* 00 001548  3.5045X 10" 8
Fluoride anion F~ 63 SCF* o) 6733 1524 X 1074
Sodium cation Na* 63 SCF* 0 044919 1114 X 10716
Chloride anion CI’ 63 SCF* 00 331.1 74496 X 10714
Potassium cation K* 63 SCF* [e'¢] 6631 1501 X 10715

* Explicitly ECW.

® Slightly revised with respect to the value given in [52].

c

MP2 perturbation theory and finite magnetic field.

4 Estimated by extracting the paramagnetic contribution from the electron correlated
dipole polarizabilities computed in [120] and the diamagnetic contribution from the electron-
correlated dipole-dipole—quadrupole polarizabilities of [84].

¢ MCSCF quadratic response.

" SCF and finite electric field.

¢ SCF cubic response.

" Time-dependent Hartree—Fock perturbation theory.
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6. Comparison of theory and experiment (An)

In this section we look at the An of those species for which there are reasonably
accurate calculations and, at the same time, at least some experimental, or
experimentally derived, values. It is ironic that the smallest systems (fewest electrons),
for which the theoretician can be most accurate, are the most challenging for the
experimentalist, since for a small species the birefringence is quite tiny. This is very
much the case for the rare gas helium. Accurate sum-over-states evaluations which use
explicitly ECWs and include the frequency dependence or dispersion [52], give a value
of An=1.05791 au at A = 6328 A (table 8). The most accurate experimental value,
and there are no Aaor Ay to complicate matters, is An = 0:80+0.16 au at 5145 A [30].
By considering the calculated static value (An = 1:06061 au), it is clear that the small
frequency difference is not able to account for the discrepancy between theory and
experiment, but the helium gas experiment is notoriously difficult. For neon (see table
8), the difference is even greater and, although the theoretical results [54, 55] are not as
accurate as those for helium (they account for electron correlation through either the
MP2 or the MCSCF formalism), it is unlikely that they are wrong by the factor of two,
which would be necessary to bring them into line with the experimental value [29]. For
argon the situation improves, most probably because the experiment is easier, and the
calculated values [55, 58] at 5145 A (An = 24-26 au) more or less fall within the
experimental bounds (An = 30445 au) which are given in [18].

For molecules (table 9), there is also, generally, poor agreement between
experiment and theory. However, here there is the complicating factor that Ancannot
be measured directly and that the values of the polarizability and magnetizability
(magnetic susceptibility) anisotropies must be used to extract Anfrom the experimental
data on An. Often Anis a small contribution to An and may get lost in the experimental
error. For H2 and D2 there are exceptionally accurate calculations of An, which take
into account both electron correlation and vibrational effects [50]. For H2 at A =
6328 A, the experimental value [25] is 50% higher than the theoretical value but, for
a different experiment [23, 24], the theoretical value lies within the experimental
bounds. Theoretically, itis found that the isotopic shift, due only to vibrational effects,
is small and for D2 the Anvalues are only slightly smaller than those for Hz. This is
corroborated by the experimental value extracted from [25], although again the value
is 50% too high. It is not, however, apparent in the experiments in [23], where an
enormous shift is found [24].

For Nz, CO and C2H2, one could say that the theoretical and experimental values
of Anare in accord but, given the wide experimental error bars, this is sophistry. We
can, however, on theoretical grounds, discount the experimental value given in [15] for
C2H2 (table 9). For CH , the theoretical value [64], which may be improved upon, is
almost in range of the experimentally determined bounds as cited in [52]. At this time
it appears to us that new experimental techniques are going to be required before An
can be measured to a level which is commensurate with today’s ab initio computations.
Such techniques have been described in section 2.

7. Conclusions
The CME is an interesting and open field. The new and very sensitive apparatus
designed to measure vacuum magnetic birefringence could be used effectively to
perform new measurements that would allow us to solve some of the discrepancies
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Table 8. Comparison of theoretical and experimental values of Anfor the rare gases.

Theory Experiment
Atom Symbol 2 (A) An(au) 2 (A) An(au)
Helium He 00 1:06061°
6328 1.05791° 6328 Iel141.1°
5145 0-80+0-16¢
Neon Ne 6328 3.029° 6328 401 4+ 3+0°
5145 3:034° 5145 125+ 007"
5145 2:670*
Argon Ar 6328 25.68° 6328 2640+ 1+5°
5145 25.70° 5145 30:0 + 4+5"
5145 24141

* This is the static value and was obtained from a highly accurate, explicitly electron-

correlated procedure [52].
b

This is a slightly revised value of that given in [52].
¢ The value cited in [52] as a private communication from W. Hiittner.

¢ From [30].
¢ MP2 perturbation theory results from [55].
" From [29].
¢ MCSCEF results from [54].
" From [18].
! MCSCF results from [58].
Table 9. Comparison of theoretical and experimental values of Anfor some simple molecules.
Theory Experiment
Molecule Formula 2 (A) An(au) 2 (A) An(au)
Hydrogen H, 6328 10-547" 6328 157+2°
5145 10-386" 5145 942°
Deuterium D, 6328 10-374" 6328 1534 3°
5145 10-175° 5145 24 3°
Nitrogen N, 6328 22.55¢ 6328 969+ 75°
Carbon monoxide cO 6328 37.54¢ 6328 754+ 60°
Acetylene CH, © 86-85' 6328 20+ 54°
6328 455+ 34"
Methane CH 00 40-7 6328 48+1+ 3.0

4

=3

From [25].

°

From [17].
MCSCEF calculation in [60].
From [33].
From [15].
MCSCEF calculation in [64].

= ® < o oa

I W. Hiittner, cited as a private communication in [52].

Explicitly electron-correlated calculation, also all vibrational effects are included [50].

Based on the experimental results in [23] as analysed by Buckingham and Williams [24].
MP2 perturbation theory calculations with vibrational effects included [57].

between theory and experiment for gases such as neon and helium. Computational
methods are also very promising. All this should undoubtedly be a stimulus to
experimentalists to push the accuracy of their results and to computational chemists
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to widen the range of systems that they investigate and to extend the sophistication of

their techniques.
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